Positivity of the Weights of Extended Gauss-Legendre Quadrature Rules

By Giovanni Monegato*

Abstract. We show that the weights of extended Gauss-Legendre quadrature rules are all positive.

1. Introduction. We consider extended Gauss-Legendre quadrature formulas, i.e., integration rules of the type

(1)
$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{n} A_{i}^{(n)} f(\xi_{i}^{(n)}) + \sum_{j=1}^{n+1} B_{j}^{(n)} f(x_{j}^{(n)}) + R_{n}(f),$$

where $\xi_i^{(n)}$, $i=1,\ldots,n$, are the zeros of the *n*th degree Legendre polynomial $P_n(x)$, while the nodes $x_j^{(n)}$, $j=1,2,\ldots,n+1$, and the weights $A_i^{(n)}$, $B_j^{(n)}$ are chosen so that (1) has degree of exactness p=3n+1 (3n+2 if n is odd), i.e., $R_n(f)=0$ whenever f is a polynomial of degree up to p. If we denote by $E_{n+1}(x)$ the polynomial of degree n+1, whose zeros are the abscissas $x_j^{(n)}$, $j=1,2,\ldots,n+1$, then $E_{n+1}(x)$ has to satisfy the following orthogonality relation

$$\int_{-1}^{1} P_n(x) E_{n+1}(x) x^k dx = 0, \quad k = 0, 1, \dots, n.$$

Szegő [4] has studied $E_{n+1}(x)$ in a different context and gives some very interesting results. For instance, he proves that the nodes $x_j^{(n)}$ are in (-1, 1) and interlace with the zeros of $P_n(x)$.

Formulas for the computation of the weights $A_i^{(n)}$ and $B_j^{(n)}$ are given in [2], [3]. In [2] it is shown that the $B_j^{(n)}$'s are positive; however, nothing has been said about the sign of $A_i^{(n)}$. In this note we show that the weights $A_i^{(n)}$ are also positive.

2. Positivity of $A_i^{(n)}$. We consider the Legendre function of second kind

(2)
$$Q_n(x) = \frac{1}{2} \int_{-1}^1 \frac{P_n(t)}{x - t} dt, \quad n \ge 1,$$

defined for any x in the complex plane cut along the segment [-1, 1]; we introduce the function

(3)
$$\overline{Q}_n(x) = \frac{1}{2} \lim_{\epsilon \to +0} \left[Q_n(x + i\epsilon) + Q_n(x - i\epsilon) \right],$$

which is analytic on (-1, 1). It is known [5, p. 78] that

Received April 21, 1977.

AMS (MOS) subject classifications (1970). Primary 65D30; Secondary 33A65.

^{*}Work performed under the auspices of the Italian Research Council.

(4)
$$\lim_{\epsilon \to +0} \left[Q_n(x+i\epsilon) - Q_n(x-i\epsilon) \right] = -i\pi P_n(x), \quad -1 < x < 1.$$

From (2), (3) and (4), and recalling Lebesgue's convergence theorem, it then follows that at the zeros $\xi_i^{(n)}$, $i = 1, \ldots, n$, of $P_n(x)$ we have

(5)
$$\overline{Q}_n(\xi_i^{(n)}) = \frac{1}{2} \int_{-1}^1 \frac{P_n(t)}{\xi_i^{(n)} - t} dt.$$

Let now

$$E_{n+1}(\cos\phi) = \lambda_0 \cos(n+1)\phi + \lambda_1 \cos(n-1)\phi + \cdots + \begin{cases} \lambda_{n/2} \cos\phi, & n \text{ even,} \\ \frac{1}{2}\lambda_{(n+1)/2}, & n \text{ odd,} \end{cases}$$

and

$$e_{n+1}(\phi) = \lambda_0 \sin(n+1)\phi + \lambda_1 \sin(n-1)\phi + \dots + \begin{cases} \lambda_{n/2} \sin \phi, & n \text{ even,} \\ 0, & n \text{ odd,} \end{cases}$$

where $x = \cos \phi$, $0 < \phi < \pi$, and, as known [4], $\lambda_0 = (2n + 1)!/(2^{2n}(n!)^2)$. Then, Szegö in his paper [4, p. 507] gives the following inequality

(6)
$$\overline{Q}_n(\cos\phi)E_{n+1}(\cos\phi) + \frac{\pi}{2}P_n(\cos\phi)e_{n+1}(\phi) > 1, \quad 0 < \phi < \pi,$$

which implies that at the nodes $\xi_i^{(n)}$

(7)
$$|E_{n+1}(\xi_i^{(n)})| > |\overline{Q}_n(\xi_i^{(n)})|^{-1}, \quad i = 1, \dots, n.$$

We are now ready to prove the following

Theorem. The weights $A_i^{(n)}$ and $B_j^{(n)}$ of the extended Gauss-Legendre rules are always positive.

Proof. The positivity of $B_j^{(n)}$ has already been proved in [2]. In that paper, the following expression for the weights $A_i^{(n)}$ has also been given

(8)
$$A_i^{(n)} = H_i^{(n)} - \frac{h_n}{k_n |P_n(\xi_i^{(n)})| |q_{n+1}(\xi_i^{(n)})|}, \quad i = 1, \dots, n,$$

where $H_i^{(n)} = 2|\bar{Q}_n(\xi_i^{(n)})|/|P_n'(\xi_i^{(n)})|$ are the weights of the *n*-point Gauss-Legendre rule, $h_n = 2/(2n+1)$, $k_n = (2n)!/(2^n(n!)^2)$ and $q_{n+1}(x) = 1/(2^n\lambda_0)E_{n+1}(x)$. Recalling (7), from (8) we have

$$A_i^{(n)} > H_i^{(n)} \left(1 - \frac{h_n}{k_n} 2^{n-1} \lambda_0 \right) = 0,$$

which proves the theorem.

What follows is an immediate consequence (see for example [5, Theorem 15.2.2]) of the theorem we have just proved.

COROLLARY. The quadrature process defined by (1) is convergent for every function f(x) which is Riemann-integrable in [-1, 1], i.e., $\lim_{n\to\infty} R_n(f) = 0$.

Remark. In his paper, Szegö derives, although not explicitly stated, the analogue of (6) for rules of type (1) with a weight function of the form $(1-x^2)^{\mu-\frac{1}{2}}$, when

 $0 < \mu < 1$. In a way very similar to the Legendre case, it may then be shown that the weights of that type of rules are positive, too. For $\mu = 0$, 1 see [2].

Istituto di Calcoli Numerici Università di Torino 10123 Torino, Italy

- 1. P. J. DAVIS & P. RABINOWITZ, Methods of Numerical Integration, Academic Press, New York, 1975.
- 2. G. MONEGATO, "A note on extended Gaussian quadrature rules," *Math. Comp.*, v. 30, 1976, pp. 812-817.
- 3. R. PIESSENS & M. BRANDERS, "A note on optimal addition of abscissas to quadrature formulas of Gauss and Lobatto type," *Math. Comp.*, v. 28, 1974, pp. 135-139
- 4. G. SZEGÖ, "Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören," *Math. Ann.*, v. 110, 1934, pp. 501-513.
- 5. G. SZEGÖ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, 4th ed., Amer. Math. Soc., Providence, R. I., 1975.